Purley C of E Primary School Calculation Policy
 March 2021

Helping you to help your child: Calculation methods

Introduction:

The aim of this policy is to show the steps that are covered when teaching the four operations of addition, subtraction, multiplication and division. This updated version of the policy also includes pictorial representations of the equipment that might be used to show the step visually - a key part of how the operations are taught in our school.

Children are introduced to the processes of calculation through practical, oral and mental activities. As they begin to understand the underlying ideas, they develop ways of recording to support their thinking and calculation methods, so that they develop both conceptual understanding and fluency in the basics of mathematics. Whilst interpreting signs and symbols involved with calculation, orally in the first instance, children use both hands-on items as well as pictorial representations to support their mental and written methods of calculation.

By the end of Year 6, children should be equipped with efficient mental and written calculation methods, which they use fluently. Decisions about when to progress should always be based on the security of pupils' understanding and their readiness to move ahead to the next stage. At whatever stage in their learning, and with whatever written method is being used, children's strategies must still be underpinned by a secure understanding and knowledge of number facts that can be recalled fluently with flexibility.

When children leave Purley Primary School our overall aim is that they:

- Are able to recall number facts with fluency - having developed conceptual understanding through being able to visualise key ideas through experience with practical equipment and visual representations;
- Make use of diagrams and jottings to help record / reason through stages of thinking when using mental methods that generate more information than can be kept in their heads;
- Have an efficient, reliable, written method of calculation for each number operation (+-x -) that they can apply with confidence when undertaking calculations that they cannot carry out mentally;
- Are able to make connections between all four number operations, understanding how they relate to one another, as well as how the rules and laws of arithmetic can be applied.
- Have a solid understanding of the language and vocabulary used in mathematics
- Have a variety of ways to represent mathematical steps visually
- Have effective skills to decide if an answer makes sense

From Early Years to Year 1:

There are fundamental concepts that it is important for children to develop an early understanding of as building blocks to future learning in maths, including that linked to calculation. A selection of the skills include:

- Ordinality - 'the ordering of numbers in relation to one another' - e.g. (1, 2, 3, 4, 5...)
- Cardinality - 'understanding the value of different numbers' - e.g. (7 = \square $17=$ \qquad $+$
 $14=$
- Equality - 'seven is the same total as four add three' - e.g.
- Subitising - 'instantly recognising the number of objects in a small group, without counting them' - e.g.

- One-to-one correspondence - e.g.

- Conservation of number - 'recognising that a value of objects are the same, even if they are laid out differently' - e.g.

- Concept of zero $3+0=3$
- Counting on and back from any number - e.g. 'five add three more totals eight'
'ten take away three totals seven' M

Each stage/step in teaching is split into 5 columns:
Counting - the objective from the National Curriculum
Mental maths strategies and linked concepts - mental maths strategies that could be used in the stage and ideas of how they link across other parts of maths
Rapid recall - strategies that can be used in the stage that need to be practised and learnt by recall
Written calculation - formal written methods
and appropriate models images to support conceptual understanding - how equipment is used to support written methods

Mental calculation strategies for addition and subtraction:

The ability to calculate mentally forms the basis of all methods of calculation and is a skill that has to be kept up through all stages of learning. A good knowledge and 'feel' for numbers, happens through structured practice and progression in practical math's experiences alongside visual representations.

The following strategies allow children different ways to arrange numbers in their heads and to build up skills that will be used throughout their learning.

Doubles: $8+8=16$ Begin to connect addition and multiplication to make adding doubles more efficient.	Near doubles: $6+7=13$ ldentify numbers that are close to known doubles and understand that they can be added together in different ways.	Number bonds: $7+3=10$ Build up known number facts to give steps in addition of larger numbers
Partitioning: $14+12=26$	$8+8$ is connected to 8×2	

	Counting	Mental maths strategies \& linked concepts	Rapid recall	Written calculation \& appropriate models/images to support conceptual understanding	
Stage 1:	Count in ones to and across 100 forwards and backwards starting from 0,1 and other numbers. Count in multiples of two, five and ten using a counting stick set up as a number track.	Explicitly teach every mental maths strategy detailed above. Pupils use apparatus to explore addition as the inverse of subtraction.	Rapid recall of all pairs of numbers totalling numbers up to 20. Use structured apparatus i.e. Numicon, tens frames, abaci, etc.	Combining two groups: - Teachers model how to line up counters/objects on a number track before counting on. This is a precursor to use of a fully numbered number-line. - Children develop a mental picture of the number system for use with calculation. A range of key models and images support this, alongside practical equipment.	$\begin{gathered} 1234.5678910 \\ 0000 \\ 3+2=5 \end{gathered}$ 'Three plus two is the same as five' $00000000-00$ 'Eight add two more makes ten' 'Four add one more is the same as five'
		'Four add one is the same as five'	$\begin{gathered} \mathrm{C} \\ 0 \\ 0 \end{gathered}$	Whole / part-whole model: - The concept of a whole / partwhole model is introduced.	Tens frame Cherry model
Stage 2:	Continue practising above skills. Count in steps of 2, 3 and 5 forwards and	Explicitly teach every mental maths strategy detailed above. Round numbers to the nearest 10, for example,	Recall addition facts for all numbers to 20.	Counting on from the largest number: - Children begin to use number lines to support their own calculations, initially counting on from the largest number in	Number line with all numbers labelled $18+5$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& backwards to and from zero using a counting stick set up as a number line. Count in tens from any number - link to coins in a piggy bank as well as a number square. \& by illustrating on a number line that is drawn on a folded strip of paper. \& \& \begin{tabular}{l}
ones before beginning to work more efficiently. \\
Reordering calculations to apply use of mental maths strategies: \\
- Children reorder 'strings' of numbers to apply their understanding of mental maths strategies, including doubles and number bonds, e.g. \(6+7+4\) reordered to \(6+\) \(4=10\) and then \(10+7=17\). Jottings are used to help keep track of thinking. \\
Whole / part-whole model: \\
- The concept of a whole / partwhole model is reinforced and extended.
\end{tabular} \& Questions such as: 'How might I rearrange these to find the total?' are asked. \\
\hline Stage 3: \& Continue practising above skills. Count forward and backwards from 0 in multiples of 4 , 8,50 and 100. Count on 10 or 100 from any twodigit number. Count up and down in tenths. Link to \& \begin{tabular}{l}
Reinforce partitioning and bridging through multiples of 10 , plus adjusting when adding 11 or 9 . \\
Use structured apparatus to understand that subtraction undoes addition and link with inverse number operations.
\end{tabular} \& \begin{tabular}{l}
Connect pairs totalling ten to pairs of multiples of 10 totalling 100. \\
Use 10ps in tens frame. Recall pairs of two-digit
\end{tabular} \& \begin{tabular}{l}
Expanded horizontal addition: \\
- Teachers model how numbers can be partitioned into tens and ones, including different ways,
\[
\begin{aligned}
\text { e.g. } 36 \& =30+6 \\
36 \& =20+10+6
\end{aligned}
\] \\
- Add numbers using structured apparatus to support understanding of place value. \\
- Make connections between partitioning both numbers using structured apparatus and partition the second number only using a number line.
\end{tabular} \& \begin{tabular}{l}
\[
=
\] \\
Add... \\
\#17mim \\
\#川min川mimin

(1) a ...and...

(1) © (1) ■
\end{tabular}

\hline
\end{tabular}

[^0]

	equipment and a counting stick.		Pairs of fractions totalling one.		It is important that empty number lines are kept as well as using more formal written calculation methods. Counting on more efficiently: $34+23=57$
Stage 5:	Count forwards and backwards in steps of powers of 10 for any given number up to one million. Continue to count forwards and backwards in simple fractions. Count forward and backwards in	Use apparatus and knowledge of place value to add decimals, i.e. $3.4+2.5=5+$ 0.9 Reorder increasingly complex calculations, i.e. $1.7+2.8+0.3$ $=1.7+0.3+$ 2.8 Compensating $\text { - i.e. } 405+399$	Continue to practice previous stage and make links between known facts and addition pairs for fractions, percentages and decimals Doubles and halves of decimals, i.e. half of	Expanded vertical method, leading to columnar addition: - Teachers model a column method that records and explains partial mental methods. - There remains an emphasis on the language of calculation, e.g. 'Forty plus seventy equals one-hundred and ten.'... 'Seven add six equals thirteen.' ...before recombining numbers. Teachers also model the language of: 'Four tens add seven tens total eleven tens or 110.'	Informal columnar: Adding the hundreds first: 471 +356700 120 7 Adding the ones first: 827 471 +356 7 120 700 827

	appropriate decimals and percentages.	\rightarrow add 400 and then subtract one.	5.6, double 3.4. Sums and differences of decimals, i.e. $6.5+2.7$	- Teachers similarly advance to model the addition of two 3digit numbers with the expectation that as children's knowledge of place value is secured, they become ready to approach a formal compact method.			$\#$ $\#$ $\#$	T
Stage 6:	Continue to practice previous skills. Count forwards and backwards in simple fractions, decimals and percentages.	Bridging through decimals, i.e. $\begin{aligned} & 0.8+0.35=0.8 \\ & +0.2+0.15 \end{aligned}$ using empty number lines. Partitioning using near doubles, i.e. 2.5 $+2.6=5+0.1$ Reorder decimals, i.e. $\begin{aligned} & 4.7+5.6-0.7 \\ & \ldots \text { as } \ldots 4.7-0.7 \\ & +5.6=4+5.6 . \end{aligned}$	Using children's confident recalling of basic facts to 20/100 and deriving facts using place value, make links between decimals, fractions and percentages. i.e. $1+19$ $10+190$ $100+1900$ Question: What do you notice?	Columnar addition (formal written method): - The concept of exchange is reinforced through continued use of equipment. - Teachers model: 1. "I have two tens and five ones, which need adding to four tens and seven ones." 2. "I add five ones to seven ones, which gives me twelve ones." 3. "I exchange ten of my twelve ones for a ten counter." 4. "I add my three tens and four tens to make seven tens." "Altogether, I have seven tens and two ones." - Teachers similarly advance to model the addition of two 3digit numbers and then go beyond.	Pupils to mental Formal c with smal $\begin{array}{r} 25 \\ +47 \\ \hline \end{array}$	be enco trategies olumnar ller value	aged to rst. sing an ex mbers: $\begin{array}{r} 25 \\ +47 \\ \hline 2 \\ \hline \end{array}$	consider xample
					(1) ${ }^{\text {(1) }}$	(1) (1) (1)(1)	- ${ }^{-1}$	
					© © ©	(1) (1) (1) (1)	- ${ }^{-1}$	
					$\begin{array}{r}25 \\ +47 \\ \hline 2 \\ \hline{ }^{2} \text { Tens }\end{array}$	ones	$\begin{array}{r} 25 \\ +47 \\ \hline 72 \\ \hline 1 \end{array}$	
					(3) 3	(1) (1)	$9{ }^{\circ}$	(1) (1)
					© ©			

				587	
+475					
1062					
11					

Page 11 of 26

	Counting	Mental strategies	Rapid Recall	Written calculation and appropriate models and images to support conceptual understanding	
$\begin{aligned} & \text { Stage } \\ & \text { 1: } \end{aligned}$	Count in ones to and across 100, forwards and backwards starting from 0,1 and other numbers. Count in multiples of two, five and ten.	Explicitly teach every mental maths strategy detailed above. Pupils use apparatus to explore addition as the inverse of subtraction: 'One less than five is four'	Rapid recall of subtraction facts for numbers up to 10. Use structured apparatus, i.e. Numicon, tens frames, abaci etc.	Subtraction as taking away from a group: - Teachers model how to remove counters/objects and count back on a number track. This is a precursor to use of a fully numbered number-line. Whole / part-whole model: - The concept of a whole / partwhole model is introduced.	'Five minus two totals three' $000-00-$ 'Six take away two leaves four' 'One less than six is five' Tens frame Bar model Cherry model
Stage 2:	Continue practising above skills. Count in steps of 2, 3 and 5,	Explicitly teach every mental maths strategy detailed above.	Recall subtraction (and addition) facts for all	Taking away: - Children begin to use number lines to support their own calculations,	Number line with all numbers labelled

	forwards and backwards to and from zero. Count in tens from any number link to coins in a piggy bank as well as a number square.		numbers to 20.		$13-5=8$ to Comparing two sets to find the difference. $\begin{array}{ll} \text { OOOOO } \\ \text { OOOOOOOOOOOO OOO OO } \end{array}$
$\begin{array}{\|l} \hline \text { Stage } \\ \text { 3: } \end{array}$	Continue practising above skills. Count from 0 in multiples of $4,8,50$ and 100. Count on and back by 10 or 100 from any two digit number. Link to counting stick counting forwards and backwards flexibly. Count up and down in	Reinforce partitioning and bridging through multiples of 10 , plus adjusting when subtracting 11 or 9 . Use structured apparatus to understand that subtraction undoes addition and link with inverse number operations.	Connect subtractions from ten to subtractions from multiples of 10 totalling 100. Use 10ps in tens frame. Subtract two digit numbers from 100 i.e. ? = 100-78	Taking away: - When teaching children about reduction, highlight the importance of only partitioning one number.	Subtraction by partitioning with use of equipment and linked with a horizontal expanded written number sentence: $167-24=143$ 204 In either order... To begin: $167-20=147$ Then: $147-4=143$ $\begin{array}{r} 100+60+7 \\ -\quad 20+4 \\ \hline 0+40+3 \\ \hline \end{array}$

	tenths linking to visual image.			Finding the difference: - Children move on to find the difference by making number line comparisons.	Finding the difference on a number line: Children should note that finding the difference is often the most efficient way of solving a subtraction problem when two numbers are close together. $\text { e.g. } 61-59$
$\begin{aligned} & \text { Stage } \\ & \text { 4: } \end{aligned}$	Continue practising of previous skills. Count forwards and backwards from 0 in multiples of 6, 7, 9, 25 and 1000 using counting sticks, number lines, number squares, etc. Count up and down in tenths, hundredths and simple fractions using models and images,	Bridging through 60 for time, i.e. 70 minutes $=1$ hour and 10 minutes Rounding any number to the nearest 10, 100 or 1000. Rounding numbers with one decimal place to nearest whole number. Explore inverse as a way to derive new facts and to check accuracy of answers.	As above. Use known facts and place value to derive new ones, i.e. 'If I know $11-3=8$, I also know $1.1-0.3=$ 0.8 and 8/100 - $3 / 100=$ 5/100.' Sums and differences of pairs of multiples of 10, 100 or 1000. Subtraction of fractions totalling 1 , i.e. $1-0.3=$ 0.7	Taking away: - Subtraction by partitioning with use of manipulatives, and including transfer / exchange, linked with a horizontal expanded written calculation in preparation for a future formal column method.	$\begin{array}{r} 363-147=216 \\ 50 \quad 13 \\ 300+60+3 \\ -100+40+7 \\ \hline 200+10+6 \\ \hline \end{array}$

Multiplication:

$\begin{aligned} & \text { Stage } \\ & \text { 1: } \end{aligned}$	Count forwards and backwards in 2s, 5 s and 10s	Doubling up to six and then ten whilst using related models and images.	Derive/recall doubles up to five and derive/recall halves up to ten.	Developing early conceptual understanding of multiplication (grouping):	Use objects, pictorial representations and arrays to show the concept of multiplication:
$\begin{aligned} & \text { Stage } \\ & \text { 2: } \end{aligned}$	Count forwards and backwards in 2s, 3s, 5s and 10s from zero.	Begin to understand and use inverse number operations: Stories are used alongside a triad to help children understand links between number operations, e.g. "There are five pencils in two packs, which means that there are ten pencils altogether." Doubling is reinforced using a whole/part-whole model:	Derive/recall doubles up to ten and derive/recall halves up to twenty. Recall \& use multiplication facts for the 2X, 5X and 10X-tables. Learn what happens when a number is multiplied by zero or one.	Understanding multiplication as repeated addition: - Investigate multiplication as repeated addition, so that the law of cummutativity is understood. - Whilst arrays are also modelled explicitly at this stage, it is important to note that they will continue to be a key model at later stages,	Arrays: 5×3 3×5 00000 888 00000 and 888 Connect related facts with both array and repeated addition images. Repeated addition on the number line linked with manipulatives: $6 \times 4=24$ So: ‘Six multiplied by four' ...or... 'Six taken four times.'

	tenths and hundredths.	Use reordering to multiply three numbers. Children learn about the associative law: $(9 \times 5) \times 10=(10 \times 5) \times 9$			2 114 100 10 4 At th the short an ex abov multi	Link with (100 X 2) \qquad (4 X -statuto m sugge however, calculati lead into	ive law: X 2) + 8 idance in aching am feel that set out short
Stage $5:$	Counting forwards and backwards in $2 \mathrm{~s}, 3 \mathrm{~s}$, $4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}$, $7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}$, 10s, 25s and 1000s from zero.	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	Recall \& use multiplication facts for all times-tables up to 12 X 12.	Relate multiplying a 4/3/2-digit by $1 / 2-$ digit number with grid to using long multiplication:		10 8 100 80 30 24 18 $\times 13$ 24 30 80 100 234	

Division:

	Counting	Mental strategies	Rapid recall	Written calculation and appropriate models and images to support conceptual understanding	
$\begin{aligned} & \text { Stage } \\ & \text { 1: } \end{aligned}$	Count forwards and backwards in 2s, 5 s and 10s	Doubling up to six and then ten whilst using related models and images.	Derive/recall doubles up to five and derive/recall halves up to ten.	Developing early conceptual understanding of division as grouping and sharing:	Use objects, pictorial representations and arrays to show the concept of division as grouping and sharing. "Two children share six pencils between them" "Six children are asked to get into three equal groups" \square \square \square \square \square \square
$\begin{aligned} & \text { Stage } \\ & \text { 2: } \end{aligned}$	Count forwards and backwards in 2s, 3s, 5s and 10s from zero.	Begin to understand and use inverse number operations.	Derive/recall doubles up to ten and derive/recall halves up to twenty. Recall and use multiplication facts for the	Understanding division as repeated subtraction: - Investigate division as repeated subtraction. - Through teacher modelling,	Number lines: $12 \div 3=4$ $15 \div 5=3$

				practical context.	$\begin{array}{r} 64 \\ -\quad \begin{array}{r} 64 \\ 0 \end{array}(8 \times 8) \\ \\ \hline \end{array}$
$\begin{array}{\|l\|} \hline \text { Stage } \\ 5: \\ \hline \end{array}$	Counting forwards and backwards in 2s, 3s, $4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}$, $7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}$, 10s, 25s and 1000s from zero.	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	Recall \& use multiplication facts for all times-tables up to 12 X 12.	Dividing a 4/3/2digit by 1-digit number, in relation to long division: - By this stage, there is a statutory requirement that children can use a formal written calculation method, such as long division. - Short division may begin to be taught alongside long division, but still with use of visual representations	Remainders should be interpreted in the following ways when long division is used: - as whole numbers - as fractions - through rounding in an appropriate way to the context Long division: $\begin{aligned} & 415 \div 9=46 \text { and } 1 / 9 \\ & 9 \longdiv { 4 6 } \text { and } 1 / 9 \\ & 40 \times 9=\frac{360}{55} \\ & 6 \times 9=\frac{54}{1} \end{aligned}$
Stage 6:	Consolidate all previous counting, including forwards and backwards in fractions.	Perform mental calculations, including with mixed numbers and different number operations.	Recall \& use multiplication facts for all times-tables up to 12 X 12.	Dividing a 4/3/2digit by $2 / 1$-digit number, in relation to long and then short division: - By this stage, there is a statutory requirement that children	Remainders should be interpreted in the following way when short division is used: - through rounding in an appropriate way to the context Long division: $432 \div 15=284 / 5$ $\begin{array}{r} \frac{28}{15} 4332 \\ 20 \times 15=\underline{300} \\ \hline \end{array}$

[^0]: Page 7 of 26

